

Waste to Energy Processing Technology From Landfill Mining to Renewable Energy Power Plant

GERMANY

HONG KONG

Total Waste Management Consortium

ORGANIC WASTE TECHNOLOGIES HK LTD

Landfill

Landfill Mining

Waste Separation

Solution From Landfill Mining to Renewable Energy Power Plant

Total Waste Management

Landfill Mining and Remediation

Capacity = 1,000 Tons

per day

Landfill mining and remediation is a process whereby solid wastes which have previously been land filled are excavated and processed.

ORGANIC WASTE TECHNOLOGIES HK LTD

WASTE SEPARATION Renewable Energy – 1,000 Tons Per day

Renewable Energy(=)Solid Fuel500 Tons per day

An Entropic process which converts the RDF into a premium coal substitute. RDF is fed into the head end of a modified extruder/reactor and is moved continuously through the reactor by a twin screw conveyor.

The waste material becomes thoroughly mixed and heated to nearly 320°C, driving off moisture and volatile matter.

IECOLOGY SRL

Converting Plastics into Diesel Oil

SEGREGATING

SHREDDING

DUMPSITES

Syngas Fuel

Creating Renewable Alternative Energy from Waste Plastic

PATENTED CONVERSION MACHINE DESIGN

Syngas[™] Conversion Machine

Syngas[™] Conversion Machine

TOP VIEW

FRONT VIEW

The Conversion Process

Feedstock poured into material container of the extrusion machine

Reactor heaters is switched on. The temperature is set between 400°C to 600°C

The molten plastic will be extruded into the Reactor. Inside the Reactor, the plastic will be gasified into Hydrocarbon Gas. The Gas will then flow into the Catalyst Chamber to interact.

The Gas then flows into the Distillation Column and condensed.

– Diesel Oil is obtained

Gas Composition

	H ₂ (wt%)	CH ₄ (wt%)	C ₂ H ₆ (wt%)	C ₂ H ₄ (wt%)	C ₃ H ₈ (wt%)	C ₃ H ₆ (wt%)	C ₄ H ₁₀ (wt%)	C ₄ H ₈ (wt%)	CO ₂ (wt%)	CO (wt%)	HCl (wt%)
HDPE PE	0.12 0.8	1.90 23.8	2.21 6.7	6.08 20.0	1.31 0.08	4.56 5.6	0.22	0.36 0.6	Yield an	d Compos	ition of Gases
LDPE LDPE LLDPE	0.05	1.14 22 4.6	1.67 2.2	4.00 28 19.4	1.33 0.8	4.00 18 12.0	0.32 13.1 ¹	2.00	and Oils/Waxes from the Feedsto Recycling of Waste Plastic PAULT. WILLAMS Energy and Resurse Reserve heliule. Houdsearth Building. The Uni Less, Listed Sci J. UK.	om the Feedstock e Plastic Houldswarth Building, The University	
PP PP	0.05 0.7	0.93 28.2	1.45 4.0	3.52 13.9	1.00 0.09	3.53 3.7	0.23	1.29 0.4			
PS PS	0.04	0.53 0.06	0.08	0.26 0.04	0.02	0.05	0.00	0.06		ŝ	

Residue Composition

<u>No.</u>	Test Parameter	<u>unit</u>	<u>Result</u>	
1.	Silver (Ag)	ppm	<1	
2.	Potassium (as K ₂ O)	%wt	0.03	
3.	Aluminum (as Al ₂ O ₃)	%wt	1.26	
4.	Cadmium (Cd)	ppm	<1	120
5.	Chromium (as Cr)	ppm	27	
6.	Copper (as Cu)	ppm	89	
7.	Iron (as Fe)	%wt	0.55	
8.	Manganese (as MnO)	%wt	0.04	
9.	Molybdenum (as Mo)	ppm	2	- Soldy
10.	Sodium (as Na)	%wt	0.14	1. A. S.
11.	Nickel (as Ni)	ppm	8	
12.	Lead (as Pb)	ppm	17	
13.	Silicon (SiO ₂)	%wt	2.47	
14.	Sulphur (S)	%wt	0.012	
15.	Titanium (as TiO ₂)	%wt	0.34	
16.	Vanadium (as V ₂ O ₅)	ppm	1	
17.	Barium (as Ba)	%wt	0.01	
18.	Calcium (as Ca)	%wt	16.8	Intertek
19.	Magnesium (as MgO)	%wt	0.41	
20.	Zinc (as Zn)	%wt	0.13	
21.	Phosohorus (as P_2O_5)	%wt	0.10	

Output Composition

	Temp.	Distillate	Residue	Gas
PE	470℃	87.3	9.7	3
PP	450℃	85.0	14.0	1.0
PS	450℃	92.1	7.9	0

Renewable Energy Power Plant - 10 MW per day

BIO - GRID

BUSINESS CONSUMERS

RESIDENTIAL CONSUMERS

10.10

Biomass

Mill	RDF Syncoal/Diese I
RE Fuel Capacity	45 tons/hr
WTE Internal Use	0.7MW
Minimum Sales to TNB Grid	5.0MW
Total Electricity Produced	10MW

Electricity

Waste to Fuel Processing Technology i.e. 1,000 Ten per day

ORGANIC WASTE TECHNOLOGIES HK LTD

TWM System	Daily Capacity (Tons)	%	Technology Origin	ſ
Landfill Mining	1,000	100	Hong Kong	
Waste Processed	1,000	100	Germany	
Syncoal Produced	500	50 - 60	Switzerland	L
Plastics in MSW	200	20	Malaysia	
Diesel Produced	80	10	Malaysia	
Power Plant	600		Malaysia	

3

Waste to Fuel Processing Technology = COSTS @ 1,000 Ten per Day

ORGANIC WASTE TECHNOLOGIES HK LTD

985

WEPT	Daily Capacity (Tons)	Technology COST
Landfill Mining	1,000	USD 20 Mil
Waste Processed	1,000	USD 25 Mil
Syncoal Produced	600	USD 80 Mil
Diesel Produced	80	USD 55 Mil
Power Plant	10 MW	USD 75 Mil
Infrastructures	1,000	USD 20 Mil
TOTAL		USD 275 Mil

Natural Energy Solutions for Tomorrow

Waste to Fuel Processing Technology = COSTS @ 1,000 Ten per Day

PROJECTED INCOME GENERATION per site

a. ELECTRICITY

TOTAL

- = 10MW x USD110/MWh x 8000hrs /year ~ USD 9 million
- b. DIESEL = 80Mton/day x USD700/ton* x 360 days
 - ~ USD 20 million

* Profit margin

~ USD 30 million per site

RETURNED OF INVESTMENT

= USD 275 mil / USD 30 mil = 9.2 Years ~ 11% IRR

Technology Swiss HSE S.A. For a Better Tomorrow call us today !

Via Pioda 12

CH-6900 Lugano

SWITZERLAND

WWW.TECHNOLOGYSWISS.CH ISO 9001:2008

T +41 9191 063 11 T +41 9191 063 12

ceo@technologyswiss.ch

